优质服务商推荐更多服务商>

电子产品中电磁干扰的解决方法介绍

2366

一个好的电子产品,除了产品自身的功能以外,     电路   设计和电磁兼容性(     EMC   )设计的技术水平,对产品的质量和技术性能指标起到非常关键的作用。

现代的电子产品,功能越来越强大,电子线路也越来越复杂,电磁干扰(E     MI   )和电磁兼容性问题变成了主要问题,电路设计对设计师的技术水平要求也越来越高。先进的     计算机   辅助设计(CAD)在电子线路设计方面很大程度地拓宽了电路设计师的工作能力,但对于电磁兼容设计的帮助却很有限。

电磁兼容设计实际上就是针对电子产品中产生的电磁干扰进行优化设计,使之能成为符合各国或地区电磁兼容性标准的产品。EMC的定义是:在同一电磁环境中,设备能够不因为其它设备的干扰影响正常工作,同时也不对其它设备产生影响工作的干扰。

 电子产品中电磁干扰的解决方法介绍_设计制作_RF/无线

电磁干扰一般都分为两种,传导干扰和辐射干扰。传导干扰是指通过导电介质把一个电网络上的信号     耦合   (干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。因此对EMC问题的研究就是对干扰源、耦合途径、敏感设备三者之间关系的研究。

美国联邦通讯委员会在1990年、欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保他们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性。

目前全球各地区基本都设置了EMC相应的市场准入认证,用以保护本地区的电磁环境和本土产品的竞争优势。如:北美的FCC、NEBC认证、欧盟的CE认证、日本的VCCEI认证、澳洲的C-     ti   ck人证、台湾地区的BSMI认证、中国的3C认证等都是进入这些市场的“通行证”。

    电磁感应   与电磁干扰

很多人从事电子线路设计的时候,都是从认识     电子元器件   开始,但从事电磁兼容设计实际上应从电磁场理论开始,即从电磁感应认识开始。

一般电子线路都是由     电阻器       电容器       电感器       变压器   、有源器件和导线组成,当电路中有电压存在的时候,在所有带电的     元器件   周围都会产生电场,当电路中有     电流   流过的时候,在所有载流体的周围都存在磁场。

    电容   器是电场最集中的元件,流过电容器的电流是位移电流,这个位移电流是由于电容器的两个极板带电,并在两个极板之间产生电场,通过电场感应,两个极板会产生充放电,形成位移电流。实际上电容器回路中的电流并没有真正流过电容器,而只是对电容器进行充放电。当电容器的两个极板张开时,可以把两个极板看成是一组电场辐射天线,此时在两个极板之间的电路都会对极板之间的电场产生感应。在两极板之间的电路不管是闭合回路,或者是     开路   ,在与电场方向一致的导体中都会产生位移电流(当电场的方向不断改变时),即电流一会儿向前跑,一会儿向后跑。

电场强度的定义是电位梯度,即两点之间的电位差与距离之比。一根数米长的导线,当其流过数安培的电流时,其两端电压最多也只有零点几伏,即几十毫伏/米的电场强度,就可以在导体内产生数安培的电流,可见电场作用效力之大,其干扰能力之强。

 电子产品中电磁干扰的解决方法介绍_设计制作_RF/无线

    电感   器和变压器是磁场最集中的元件,流过变压器次级线圈的电流是感应电流,这个感应电流是因为变压器初级线圈中有电流流过时,产生磁感应而产生的。在电感器和变压器周边的电路,都可看成是一个变压器的感应线圈,当电感器和变压器漏感产生的磁力线穿过某个电路时,此电路作为变压器的“次级线圈”就会产生感应电流。两个相邻回路的电路,也同样可以把其中的一个回路看成是变压器的“初级线圈”,而另一个回路可以看成是变压器的“次级线圈”,因此两个相邻回路同样产生电磁感应,即互相产生干扰。

在电子线路中只要有电场或磁场存在,就会产生电磁干扰。在高速     PCB   及系统设计中,高频     信号线       集成电路   的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其它系统或本系统内其他子系统的正常工作。

    开关电源   EMC设计实例

目前大多数电子产品都选用     开关   电源供电,以节省能源和提高工作效率;同时越来越多的产品也都含有数字电路,以提供更多的应用功能。开关电源电路和数字电路中的     时钟   电路是目前电子产品中最主要的电磁干扰源,它们是电磁兼容设计的主要内容。下面我们以一个开关电源的电磁兼容设计过程来进行分析。

图1是一个普遍应用的反激式(或称为回扫式)开关电源工作原理图,50Hz或60Hz交流电网电压首先经整流堆整流,并向储能滤波电容器C5充电,然后向变压器T1与开关管V1组成的负载回路供电。图2是进行过电磁兼容设计后的电气原理图。

1、对电流谐波的抑制

一般电容器C5的容量很大,其两端电压纹波很小,大约只有输入电压的10%左右,而仅当输入电压Ui大于电容器C5两端电压的时候,整流     二极管   才导通,因此在输入电压的一个周期内,整流二极管的导通时间很短,即导通角很小。这样整流电路中将出现脉冲尖峰电流,如图3所示。

这种脉冲尖峰电流如用傅立叶级数展开,将被看成由非常多的高次谐波电流组成,这些谐波电流将会降低电源设备的使用效率,即功率因数很低,并会倒灌到电网,对电网产生污染,严重时还会引起电网频率的波动,即交流电源闪烁。脉冲电流谐波和交流电源闪烁     测试   标准为:IEC61000-3-2及IEC61000-3-3。一般测试脉冲电流谐波的上限是40次谐波频率。

解决整流电路中出现脉冲尖峰电流过大的方法是在整流电路中串联一个功率因数校正(     PFC   )电路,或差模滤波电感器。PFC电路一般为一个并联式升压开关电源,其输出电压一般为直流400V,没有经功率因数校正之前的电源设备,其功率因数一般只有0.4~0.6,经校正后最高可达到0.98。PFC电路虽然可以解决整流电路中出现脉冲尖峰电流过大的问题,但又会带来新的高频干扰问题,这同样也要进行严格的EMC设计。用差模滤波电感器可以有效地抑制脉冲电流的峰值,从而降低电流谐波干扰,但不能提高功率因数。

图2中的L1为差模滤波电感器,差模滤波电感器一般用矽钢片材料制作,以提高电感量,为了防止大电流流过差模滤波电感器时产生磁饱和,一般差模滤波电感器的两个组线圈都各自留有一个漏感磁回路。

L1差模滤波电感可根据试验求得,也可以根据下式进行计算:

 电子产品中电磁干扰的解决方法介绍_设计制作_RF/无线

E=L*di/dt (1)  式中E为输入电压Ui与电容器C5两端电压的差值,即L1两端的电压降,L为电感量,di/dt为电流上升率。显然,要求电流上升率越小,则要求电感量就越大。

2、对振铃电压的抑制

由于变压器的初级有漏感,当电源开关管V1由饱和导通到截止关断时会产生反电动势,反电动势又会对变压器初级线圈的分布电容进行充放电,从而产生阻尼振荡,即产生振铃,如图4所示。变压器初级漏感产生反电动势的电压幅度一般都很高,其能量也很大,如不采取保护措施,反电动势一般都会把电源开关管击穿,同时反电动势产生的阻尼振荡还会产生很强的电磁辐射,不但对机器本身造成严重干扰,对机器周边环境也会产生严重的电磁干扰。

图2中的D1、R2、C6是抑制反电动势和振铃电压幅度的有效电路,当变压器初级漏感产生反电动势时,反电动势通过二极管D1对电容器C6进行充电,相当于电容器把反电动势的能量吸收掉,从而降低了反电动势和振铃电压的幅度。电容器C6充满电后,又会通过R2放电,正确选择RC放电的时间常数,使电容器在下次充电时的剩余电压刚好等于方波电压的幅度,此时电源的工作效率最高。

3、对传导干扰信号的抑制

图1中,当电源开关管V1导通或者关断时,在电容器C5、变压器T1的初级和电源开关管V1组成的电路中会产生脉动直流i1,如果把此电流回路看成是一个变压器的“初级线圈”,由于电流i1的变化速率很高,它在“初级线圈”中产生的电磁感应,也会对周围电路产生电磁感应,我们可以把周围电路都看成是同一变压器的多个“次级线圈”,同时变压器T1的漏感也同样对各个“次级线圈”产生感应作用,因此电流i1通过电磁感应,在每个“次级线圈”中都会产生的感应电流,我们分别把它们记为i2、i3、i4 ···。

其中i2和i3是差模干扰信号,它们可以通过两根电源线传导到电网的其它线路之中和干扰其它电子设备;i4是共模干扰信号,它是电流i1回路通过电磁感应其它电路与大地或机壳组成的回路产生的,并且其它电路与大地或机壳是通过电容耦合构成回路的,共模干扰信号可以通过电源线与大地传导到电网其它线路之中和干扰其它电子设备。

与电源开关管V1的集电极相连的电路,也是产生共模干扰信号的主要原因,因为在整个开关电源电路中,数电源开关管V1集电极的电位最高,最高可达600V以上,其它电路的电位都比它低,因此电源开关管V1的集电极与其它电路(也包括电源输入端的引线)之间存在很强的电场,在电场的作用下,电路会产生位移电流,这个位移电流基本属于共模干扰信号。

图2中的电容器C1、C2和差模电感器L1对i1、i2和i3差模干扰信号有很强的抑制能力。由于C1、C2在电源线拔出时还会带电,容易触电伤人,所以在电源输入的两端要接一个放电     电阻   R1。
来源:康佳集团

特别声明:本文仅供交流学习 , 版权归属原作者,并不代表蚂蚜网赞同其观点和对其真实性负责。若文章无意侵犯到您的知识产权,损害了您的利益,烦请与我们联系vmaya_gz@126.com,我们将在24小时内进行修改或删除。

相关推荐: