基于FPGA的SPI总线传输技术提供更好的选择和可行方案
4424
引言
S PI (Serial peripheral in te rf ace——串行设备 接口 )是摩托罗拉公司推出的一种同步串行通信接口。用于 MCU 和外围扩展芯片之间的串行连接,现已发展成为一种工业标准 。一路SPI数据总线只占用3或4个 I/O (Master Output Slave Input,MOSI; Master InputSlave Output, MI SO;Serial Clock,SCK;Chip Select,CS)端口,可以简化 电路 设计,节省端口资源,提高设计可靠性 。SPI总线主要特点:全双工;可以当作主机或者从机工作;提供频率可编程 时钟 ;发送结束中断标志;写冲突保护;总线竞争保护等。基于以上特点结合 FPGA 的特性,通过将SPI总线与FPGA相结合,可使SPI总线的应用更加灵活多变,为解决通信技术问题提供更好的选择和可行方案。
结合已交付的项目的经验(项目中主设备采用 ARM 芯片,从设备采用FPGA),探讨基于FPGA的SPI总线传输方案在实际中的应用,拓展SPI技术的应用范围,同时对设计中遇到的具体问题提出了有效的解决方案。
1、系统分析和设计
系统的SPI总线连接如图1所示。系统中的各从设备可以按照实际需要,实时采集不同的状态数据信息,并按SPI总线通信方式上报给主设备,主设备将最终的处理结果上报PC端,从而实现对系统的实时 监控 。
从设备需要采集的数据种类繁多,相对于使用 单片机 的单线程串行的工作方式来进行多种 数据采集 处理的工作方案,使用FPGA的工作方式显然是更优的选择(并行处理能力、运行速度快、管脚多、体积小,同时具有处理复杂问题的逻辑功能),从集成性、可靠性、兼容性等方面综合考虑,很明显最佳的设计方案就是从设备使用FPGA进行数据采集、处理。
主设备主要向从设备发送查询指令,同时将采集到的数据进行有效性判断并上传电脑。相对于从设备来说,主设备处理过程比较简单,选择较灵活、功耗低的ARM嵌入式最为合适。并且ARM具有现成的SPI接口驱动供开发者使用,大大降低了开发成本。
2、系统时序
时序是通信系统中首要考虑的因素之一,时序无误才能保证数据在传输、处理过程中的有效性,使系统保持正常的工作状态。根据时序的不同,SPI总线有4种工作模式(SPI0,SPI1,SPI2,SPI3),见图2,其中SPI0和SPI3两种工作模式使用的最广泛。通过配置系统的SPI总线的时钟极性(CPOL)和时钟相位(CPHA)可得到满足传输要求的工作模式。
当CPOL=0,串行同步时钟的空闲状态为低电平;当CPOL=1,串行同步时钟的空闲状态为高电平。可见,CPOL对于SPI总线传输协议没有较大的影响。
传输协议的模式选择主要通过配置时钟相位(CPHA)实现。当CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;当CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。确保SPI主、从设备之间的正常通信,就必须满足二者的时钟相位和时钟极性一致 [4] 。
现以某项目(采用SPI0模式)为例,选择其中1路SPI总线并对其时序进行详细阐述。时序图如图3。
片选信号cs在主设备发送数据前跳变为低电平,使被选中的从设备SPI通信端口开启;从设备完成数据发送的一段时间后,片选信号cs跳变回高电平,从设备SPI通信端口关闭。主设备发送查询/控制命令的数据帧长度为a个字节,每个字节包含8位有效数据,每位数据占用一个时钟脉冲信号;当有数据发送时,sck伴有对应的同步时钟信号,无数据发送则无时钟脉冲信号。同时,相邻字节间存在时间间隔t,在t时间内sck无时钟脉冲,即同步时钟信号是一份一份的,每份包含8个时钟脉冲。
因此,一帧完整的查询/控制指令,其数据中的每个字节占用8个时钟信号,主设备发送一条帧长度为a字节的数据需要8×a个时钟脉冲信号;假设从设备的缓存模块f if o和发送模块datatx完成对应的数据反馈过程所需最少时钟脉冲信号个数为8×n。为保证系统的通信功能正常,sck传输的时钟脉冲数应不少于该SPI总线完成一次查询/控制所需时钟信号个数(8×(a+n))。
3、技术难点及解决方案
3.1 数据同步
从图3的SPI时序图可看出,有数据才有时钟脉冲,总线的时钟不是连续而是一份一份的(每份为8个连续时钟信号),为了保证系统能正常通讯,必须确保数据在主、从设备中同步传输,这就增加了系统在数据传输过程中的难度。
就从设备而言,必须满足从设备在接收/发送状态下,经过每一份时钟信号中接收/发送的都是的一个完整且有效的字节。即主设备发送数据的每个有效字节的第1位都是在第(8×x-7)个时钟信号(x为整数,0《x《a)被从设备的接收模块采样(上升沿采样,下同),然后依次采样直至该字节的最后一位在第(8×x)个时钟信号被采样。同时,要求主设备接收数据的每个字节的第1位都是在第(8×y-7)个时钟信号输出(y为整数,n》y》a),然后依次采样直至该字节的最后一位在第(8×y)个时钟信号输出完毕,如图5所示。
为了实现数据同步,可以采用如下方式:
(1) 从设备利用片选信号cs复位清零。通过片选信号cs的下降沿,触发从设备中的数据采集模块datarx、数据缓存模块fifo及数据发送模块datatx的计数清零,确保系统在片选有效后的第一个时钟脉冲开始计数,避免因计数错误造成数据采样失效。若采用第一个时钟脉冲进行计数清零,会使数据的采集滞后1位,以致采集到无效数据,造成通讯失效。
(2) 利用时钟信号sck计数。本文SPI总线采用SPI0工作模式,利用时钟信号sck的上升沿触发采集模块内部计数器计数,确保模块的数据采样同步,获得有效数据。
(3) 从设备中的数据发送模块datatx提前发送数据。
假设数据发送模块datatx在数据发送过程中,某字节的第1位在第(8×y-7)个时钟信号输出(y为整数,n》y》a,时钟信号的上升沿输出数据,下同),第八位在第(8×y)个时钟信号输出,那么将会出现如图6所示的情况。
由于总线采用SPI0工作模式,那么主设备将通过同步时钟信号的上升沿触发数据采集,此时采集到的数据正处于电平跳变中,以致主设备采集到不确定的无效数据。
结合图6可以发现,datatx模块通过提前发送数据,能有效的解决该问题,数据传输示意图如下。
当datatx模块在发送某个字节时,利用上一字节的最后一个时钟脉冲(第(8×y-8)个时钟脉冲)的下降沿触发该字节第1位的发送,第(8×y-7)个时钟脉冲的下降沿触发该字节第2位的发送,直至该字节第8位在第(8×y-1)个时钟脉冲的下降沿发送完毕。使用这种方法,主设备在每个sck时钟信号的上升沿都能同步采集到正确的数据,确保总线通信正常。
3.2 多个从设备并联的问题
笔者在调试过程中,系统连接板上只接入1台主设备和1台从设备,系统能正常运行。但在接入多个从设备后(从设备的接口类型一致),会出现一个或者几个从设备工作失效。具体表现为从设备没有任何信息反馈,且故障无规律可循:
a)与从设备插入插槽的位置没有特定规律。例如,有A、B两台从设备,连接板有5个插槽(编号1-5)。A插入1,B插入2,此时B失效。将B依次换至剩余插槽,可能会出现B失效、A失效,甚至两者失效的情况。然而,在A、B都能正常运行的情况下,互调A、B位置,也可能出现上述三种失效现象。或者将从设备B换成完全相同的从设备C,这种新的组合相较于之前A+B的组合,在接入方式完全相同的情况下又可能产生不同的结果。
b)与从设备的插入数量没有特定规律。连接板上从设备数量的增加或者减少,对整个系统的好坏并没有特定方向的影响。加上插槽位置对系统工作的影响也很复杂。
为了解决这个问题,笔者做过如下依次尝试,但情况并没有发生好转,从设备依旧没有任何信号输出:
a)将待机状态的从设备输出置高阻;
b)I/O设置上/下拉 电阻 ;
最终笔者通过对设备内部的信号输入至信号处理部份采用SIGNALTAP进行实时分析、观察,发现数据处理模块fifo在固定位置丢失一个同步时钟脉冲(fifo的所有触发只与同步时钟sck有关)。经过分析,决定在fifo中加入异步时钟参与触发和计数,故障现象没有再次发生,多个从设备并联的问题得到了有效解决。
4、结论
利用ARM+FPGA模式搭建了SPI总线,使SPI接口技术的使用更加灵活多变,丰富了系统的I/O数量,增强了系统的数据处理能力,拓展了SPI技术的应用范围,实现了系统数据的长期可靠传输,为后端用户的决策提供了稳定可靠的理论依据。
责任编辑:gt